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The one-dimensional unsteady flow equations for flow in an elastic tube have been 
solved by employing the method of characteristics and used to predict the develop- 
ment of the flow and pressure wave forms in the left coronary artery system of the 
horse. Input data to this model include in vivo measurements of wave speed and 
aortic-root pressure, both of which were carried out in horse experiments. In  addition, 
estimates of vessel taper and fluid losses due to branching were established from plastic 
casts of the horse coronary arteries and from in vivo flowmeter data. The calculated 
results have confirmed earlier experiments in revealing a relatively large systolic 
component of flow in the major epicardial vessels. However, the calculations indicate 
that, once within the myocardium, the systolic flow component quickly diminishes and 
the diastolic flow component becomed increasingly important. The pressure pulse does 
not peak as observed in the aorta, but rather rounds out with systolic pressures de- 
creasing slowly and diastolic pressures decreasing more rapidly with distance from the 
coronary ostium. The presence of relatively large amplitude, low frequency waves 
(of the order of 5-10 Hz), which were observed mainly during diastole in horse experi- 
ments, has also been confirmed by the computer calculations. Similar calculations 
carried out for conditions simulating the dog and human coronary systems indicate 
that such oscillations become higher in frequency and lower in amplitude with decreas- 
ing animal size. 

1. Introduction 
The development of an adequate description of the detailed fluid-dynamic charac- 

teristics of the coronary circulation has been impeded by the general inaccessibility and 
small diameter of the coronary vessels in most animals and by limitations on instru- 
mentation size. This has been true even for the superficial (extramural) vessels which 
lie on the surface of the heart muscle. Recently, however, point velocity measurements 
in the coronary arteries have been carried out in horses using both hot-film anemometer 
(Nerem et al. 1976) and pulsed ultrasonic Doppler velocity meter (PUDVM) (Wells 
et al. 1977) systems. Horses have been chosen for these studies of coronary blood flow 
owing to the large artery diameters available (up to 1.5 em for the left common 
coronary artery) and their proved stamina to withstand detailed cardiac investiga- 
tions. 

Resdts obtained in studies using a constant-temperature hot-film anemometer 
system have revealed that, downstream of the entrance (ostium) to the left common 
coronary artery, the velocity profile is skewed towards the outer wall. In  this region the 
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FIUURE 1. Simultaneously measured (a) centre-line velocity wave form and (b)  electromagnetic 
flowmeter wave form together with (c) ECG for left anterior descending coronary artery in an 
anaesthetized horse. 

1 s  

left common coronary artery is curving over the base of the heart, and thus this 
skewing is as would be expected for fully viscous flow in a curved tube. A s  one pro- 
ceeds further downstream, the left common coronary artery then bifurcates (at a point 
3-4 cm from the ostium for a large horse) to form its first major branches: the left 
anterior descending (LAD) and left circumflex coronary arteries. Measurements just 
downstream of this bifurcation in general reveal profile skewing to be away from the 
flow divider in both branches. This suggests that the secondary flow effects associated 
with the curvature of the plane of bifurcation (as the arteries curve over the base of the 
heart) may dominate the normal bifurcation effects on the velocity pattern. Further 
downstream, e.g. 5-6 diameters past the point of bifurcation, hot-film anemometer 
results do indicate that the velocity profile has become relatively fully developed and, 
at least on an instantaneous basis, resembles that of Poiseuille flow. 

In  spite of the somewhat detailed results summarized above, there still exist many 
characteristics of coronary blood flow that remain unquantified. This is particularly 
true with regard to pressure wave form development, wave transmission character- 
istics and the significance of wave reflexion phenomena. Of particular fluid-mechanical 
interest has been the observation of relatively large amplitude, low frequency oscilla- 
tions in velocity (obtained with pulsed ultrasonic Doppler, hot-film anemometry and 
electromagnetic flowmeter systems) and pressure. These have a frequency of the 
order of 5-10 Hz and are observed to be superimposed upon the basic coronary flow 
and pressure wave forms measured in the extramural vessels of the horse (see figure 1). 
Velocity profile measurements in these regions using a hot-film anemometer system 
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have revealed these oscillations to exhibit no radial dependence of phase, thus appar- 
ently ruling out vortex shedding as a possible mechanism. 

Obviously, an in vivo experimental study of this oscillation phenomenon under 
varying physiological conditions would be desirable from many viewpoints. However, 
owing to the limited number of sites conveniently available for investigation experi- 
mentally, an overall picture of in vivo coronary flow and pressure development based 
on animal measurements is not possible. It is thus the purpose of this investigation to 
develop a mathematical treatment of coronary blood flow that qualitatively and, as 
far as possible, quantitatively reproduces the salient features of coronary blood flow as 
observed in vivo. Of particular interest will be the use of this model to study the 
characteristics of the pressure and flow oscillations previously noted. 

2. Coronary dynamics and a model for coronary blood ffow 
Coronary blood flow is biphasic, exhibiting two minima and two maxima during 

each cardiac cycle. During the ejection phase of the heart cycle (systole), blood is 
ejected into the coronary artery via inlets (ostia) which originate a t  the root of the 
aorta. In  the extramural vessels near the ostia this systolic component of blood flow 
has been found to be as much as one-third of the total flow occurring during the cardiac 
cycle (see figure I) .  However, in the more distal vessels which eventually penetrate 
deep into the heart muscle itself, the blood flow during systole is severely attenuated. 
This is due to the large increase in compressive stress which is developed in the heart 
wall at  this time and the attendant increase in resistance to flow. During diastole (the 
resting phase of the heart cycle), the resistance to flow decreases quickly and an 
additional surge of blood is observed in all sections of the coronary artery system. The 
nature of this extravascular compression on the left coronary blood vessels has been 
observed to follow approximately the time development of the left ventricular pressure 
(Kirk & Honig 1964; Randall & Armour 1971), although the distribution of this stress 
across the left ventricular wall has not been adequately determined. However, the 
data of Kirk 8: Honig (19G4), Randall & Armour (1971) and Rubio & Berne (1975), 
though not in total agreement, suggest that it is maximal in the subendocardial layers 
(those adjacent to the left ventricular chamber) and minimal in the subepicardial 
layers (near the exterior surface of the heart). 

The pressure wave form development in the left extramural coronary arteries of the 
horse is illustrated in figure 2. In  general, the pressure pulse at  the left ostium is identi- 
cal to the aortic-root pressure. However, as was noted earlier, further downstream 
from the ostium relatively large amplitude, low frequency oscillations (of the order of 
5-10 Hz) are observed to occur. These are particularly noticeable during the latter 
portion of the cardiac cycle and become progressively more prominent as one proceeds 
distally. Furthermore, the dicrotic wave or incisura, observed about midway into the 
cycle in the aortic and ostium pressure wave forms, is slowly masked by these oscilla- 
tions as one proceeds downstream. 

There are numerous factors which must be taken into account in the development of 
an adequate mathematical model of coronary blood flow. Obviously t'he time depend- 
ence of the flow must be considered. Another factor, however, is the suggestion from 
in vivo measurements (Rumberger, Nerem & Muir 1977) that the propagation speed 
of small pressure waves through the coronary system is highly dependent on the local 
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FIGURE 2. Temporal in wiwo pressure wave forms at various distances from the left coronary 
ostium in an anaesthetized horse. (a) Aortic 120/100 at 1 cm. ( b )  Aortic 120/100 at 3 cm. (c) Aortic 
120/100 at 5 om. (d )  Aortic 115/95 at 7 cm. (e) Aortic 110/95 at 9 cm. (f) Aortic 110/90 at 12 cm. 

pressure as well as on distance from the ostium. The numerous branches occurring 
along the actual artery system and the associated fluid losses must also be considered. 
In  addition, fluid friction, the time dependence of the artery cross-sectional area, and 
the extravascular compression of the more distal blood vessels are effects which need 
to be incorporated into any realistic model. Although blood in the larger arteries may 
be approximated as a Newtonian fluid, some of the other effects are intrinsically 
nonlinear. 

Several different types of mathematical model have been employed to study 
arterial blood flow. Among these have been the pure-resistance or steady-state perfusion 
models, the lumped-parameter or ‘Windkessel ’ models and linear models of the type 
developed by Womersley (1957) and McDonald (1974). None of these approaches 
offers quantitatively the features desired here since they do not account for nonlinear 
flow and wave propagation effects. 
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Ling et al. (1973) and Atabek, Ling & Pate1 (1975) have developed a two-dimensional 
nonlinear model of blood flow which is capable of predicting the mean flow, as well as 
velocity profiles, across a given artery section and which has been applied to both the 
dog aorta and the coronary arteries. However, an in vivo measurement of the pressure 
gradient in the vessel section is necessary as input data. This makes the model un- 
suitable for predicting flow in vessels where a prior knowledge of the pressure gradient 
is not available. Furthermore, it is difficult, if not impossible, to apply this method to an 
entire vascular system such as that of interest here. 

Another technique available for the prediction of arterial blood flow is through the 
use of the method of characteristics to solve the nonlinear, one-dimensional, unsteady 
equations of motion. This method is an attractive one for this investigation since it 
intrinsically accounts for forward- and backward-running waves a t  each site in the 
physical plane. In  using the one-dimensional equations, the pressure and flow are 
considered to be a function of only one spatial co-ordinate, i.e. distance along the vessel, 
Although such a one-dimensional model is in some ways more approximate than the 
two-dimensional linear models noted earlier, the effects of nonlinear wave propagation 
and vessel branching, which are a t  least equally important, may be easily included. 

Rockwell (1969) used the method of characteristics to solve the equations for a one- 
dimensional model of aortic blood flow which included a pulse wave velocity which was 
a function of both pressure and distance from the aortic valve and fluid volume losses 
due to vessel branching. By specifying distal and proximal boundary conditions, 
Rockwell calcuIated the flow and pressure wave form development from the aortic 
valve to points as far distal as the abdominal aorta. Features such as the steepening of 
the aortic pressure wave form as one proceeds downstream of the valve were predicted 
and found to confirm in vivo results (McDonald 1974). Womersley’s (1957) original 
linear model failed to predict this, and Rockwell’s results thus have established the 
importance of nonlinear effects in modelling arterial flow, 

Van der Werff (1974) also used the method of characteristics to study aortic blood 
flow, but with a statement of only proximal boundary conditions (here both the input 
pressure and the flow wave forms are required) and employing the fact that the solu- 
tion is periodic. The major limitations of this method are that it does not allow syste- 
matic examination of the effect of altered downstream boundary conditions on the 
development of pressure and flow wave forms and thus that any altered condition to be 
studied must first be produced in the laboratory so as to have available the appropriate 
proximal boundary conditions for the calculation. 

On the basis of the success of Rockwell (1969) and Van der Werff (1974), the method 
of characteristics has been chosen for use in solving the system of equations resulting 
from the model to be used here. The blood is assumed so be an incompressible New- 
tonian fluid whose motion can be adequately described as unsteady and one-dimen- 
sional in nature. The vessel is assumed to be a straight but tapered elastic tube, which 
allows for a continuous seepage of fluid through its walls to simulate losses due to 
branching. The radial inertia of the tube and the fluid is neglected and the effects of 
wall friction are accounted for only in an approximate manner. The elastic properties 
of the vessel are prescribed through specification of the propagation speed of small 
pressure waves through the system and the dependence of this wave speed on trans- 
mural pressure and spatial location. The heart muscle is assumed to be a thick-walled 
structure with the blood vessel in question running from the base to the apex of the left 
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heart, initially lying extramurally but, with distance from the left coronary ostium, 
becoming slowly encompassed by the left ventricular myocardium. The extravascular 
compressive stress, which is developed within the myocardium during systole and 
which acts directly upon the periphery of the vessel, is assumed to be governed by the 
development of the left ventricular pressure. 

3. Development of the characteristic equations 
The motion of blood in the coronary system is treated here as being governed by the 

unsteady one-dimensional continuity and momentum equations and by a relationship 
between the vessel cross-sectional area and pressure. These equations are as follows: 

+ $ = O ,  
as a(v,s) -+- at a2 

s = X(7,Z) .  (3) 

V(z ,  t )  denotes the instantaneous flow velocity (averaged across the vessel), P(z, t) the 
local pressure (referenced to atmospheric), $ the rate of volumetric outflow per unit 
length of the vessel (due to flow into small branch vessels) andfthe force per unit mass 
representing the effect of wall friction. Both $ andfare left unspecified at present. 7 is 
the transmural pressure acting on the vesseI, i.e. the stress acting perpendicular to the 
vessel wall, and is equal to the difference between the internal blood pressure and the 
extravascular compressive stress developed within the left ventricular myocardium. 
This compressive force is assumed to act uniformly about the circumference of the 
blood vessel. 

It also is assumed that 7 = ~ ( z ,  t ) ,  where the spatial dependence is due to the extra- 
vascular compression. This effect is minimal in the extramural vessels and maximal 
in the subendocardial vessels adjacent to the left ventricular chamber. The time 
history of this stress is assumed to follow the left ventricular pressure development 
Pv(t). On the basis of the assumption that the effects of distance z and time t are separ- 
able, 7 is here expressed as 

where the functional form of fl  must be known a priori but is left unspecified for the 
moment. 

Equations (1)-(3) represent a set of three equations in three unknowns, V, P and IS. 
Using (3), 8 may be eliminated as a dependent variable. Using (3) and the functional 
form of 7 provided by (a), substitution into (1) yields [assuming P, $. P,(z)] 

7 = p - ts(4 Pv(t), (4) 

Using L, to denote (2) and L, to denote (5) and considering the linear combination 
L = L, + AL,, where h is an undetermined multiplier, gives 

L =  

+A$-f = 0. (6) 
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If V = V(z ,  t )  and P = P(z ,  t )  and the chain rule for ordinary differentials is used, then 
from (6) 

1 
dz/dt = V+hX= V +  

PWwr) ,  * 
Setting h = f CIS, it  follows that 

dz/dt is the slope of the characteristic lines (of which there exist two for hyperbolic 
partial differential equations such as L) .  There are thus two separate ordinary differ- 
ential equations of first order. For dzldt these define two one-parameter families of 
characteristic curves in the z, t plane which belong to the solutions for P(z ,  t )  and V(z,  t )  
and which form it curvilinear co-ordinate net. By restricting the application of (6) to 
characteristic lines for which the equation for dzldt holds, it  follows that 

dz/dt = V +c,  (9) 

Here the wave speed of a small disturbance in the fluid is defined by a characteristic 
line whose slope dz/dt equals V + c a t  any point K on that characteristic. Therefore, in 
(8), c is the local speed at which small disturbances travel relative to the fluid. In the 
case of a blood vessel, c is the local wave speed and is itself, for a distensible artery, a 
function of transmural pressure and location, i.e. c = c(7 ,z ) .  

Intrinsic within this formulation and the application of the method of character- 
istics to the present problem is the assumption that certain geometric and mechanical 
reIationships are known a priori for the coronary arteries. In  particular, the solution of 
the problem can be initiated only once the functional forms of the wave speed depend- 
ence c = c(7 ,z )  and the cross-sectional area relationship X = S(7,z) are specified. 
Furthermore, the outflow function $, the friction expression f and the transmural 
pressure 7 must be expressed as explicit functions of (P, Tr; z, t ) ,  together with appro- 
priate initial and boundary conditions. 

It should be noted that coronary flow dynamics are governed by numerous mech- 
anical, geometrical and neural factors. Thus the present model, in incorporating only 
a group of the known mechanical factors influencing coronary blood flow, should not be 
expected to yield a complete picture of coronary haemodynamics. Likewise, no single 
set of mechanical parameters will serve to describe the salient features observed in all 
in wiwo measurements. Nevertheless, on the basis of in wiwo experiments performed in 
our laboratory, a standard computer model (SCM) with its own particular set of govern- 
ing parameters has been prescribed and is used here to investigate the development of 
the pressure and flow wave forms in the left coronary arteries of the horse. The input to 
the SCM, based on our experimental measurements, is discussed in the next section. 

4. Input to standard computer model from experiments 
Wave speed and cross-sectional area 

Measurements of the propagation charactepistics of small pressure waves in the extra- 
mural coronary vessels of anaesthetized horses (Rumberger et al. 1977) have suggested 

15-2 
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that the wave speed c (m/s) is highly dependent on the intrahmenal pressure P 
(mm Hg) and on the distance z (em) from the left coronary ostium. Using the method of 
least squares, a polynomial curve fit to these data was found to yield a linear dependence 
of the form 

Assuming that the pressure dependence in the subepicardial and subendocardial 
vessels is now reflected in the transmural pressure development, the wave speed 
dependence in the coronary arteries of the horse was assumed to be given by the 
expression 

The actual values used as input to the standard computer model (SCM) are 

c(P,  Z) = lei57 + 0.0363P + 0.1252. (11) 

c ( ~ , z )  = A+By+Dz .  (12) 

A = 1.57m/s, B = 0.0363m/smmHg and D = 0.08s-l. 

Substituting (1 1) into (8) and integrating gives 

where qo is a reference pressure and A ( z )  is the cross-sectional area dependence on x for 
7 = yo. Using fibreglass casts made from excised horse hearts at  a perfusion pressure of 
l;lo = Po = 100 mm Hg, it was found that the cross-sectional area of the artery (follow- 
ing the left common/left anterior descending artery combination) could be approxi- 
mated by a decreasing exponential of the form 

A(z)  = S(rl0, z )  = So(vo) e-la. (14) 

Here So(l;lo) is the cross-sectional area of the left common coronary artery at  the ostium 
at a pressure of 100 mm Hg. Thus, upon substitution (13) becomes 

In order to obtain a better fit to the area measured from the fibreglass casts, three 
separate exponentials corresponding to three different regions of the coronary system 
to be studied were used: 

In all three of these equations S has the units em2. 

Friction expression 

The frictional force per unit mass at the artery wall acting upon a vessel circular in 
cross-section and of radius (S/r)* is given by 

f =-(-) 2 7 7 4  TW. 

P S  
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FIGURE 3. Amount of blood remaining in left common/LAD coronary artery as a percentage of 
total input vs. distance from the left coronary ostium obtained from estimates of branching from 
polyester-resin cast of coronary arteries. 

Here ru: is the frictional shearing stress at  the wall. The magnitude of this shear stress is 
a flow-dependent quantity which has not been adequately described in vivo for asy 
major blood vessel, let alone the coronary arteries. However, from in vivo velocity 
profile measurements using a hot-film anemometer probe in the major extramural 
vessels of the horse (Nerem et al. 1976), it has been shown that the velocity profile 
rapidly approaches an almost fully developed, though skewed character within a few 
vessel diameters distal to the left ostium and, although time varying, at any instant 
of time is not totally unlike that of Poiseuille flow. Since it is only the average effect of 
the profile on the velocity wave form development that is of interest here, it  was'felt 
that a laminar Poiseuille type of friction expression would be adequate to describe the 
viscous forces. Using Poiseuille's law it follows that 

For input to the SCM the fluid density p was assumed to equal 1.055 g/c.c. and the 
viscosity coefficient ,u to equal 0.0365 P. 

OutJlow expression 
The outflow of blood from the left common/left anterior descending artery is modelled 
by a continuously distributed seepage which is defined by the function $. For the 
coronary arteries the loss of fluid from the main artery to branches must be a function 
of the perfusion pressure difference existing between the vessel and the capillary bed, 
P - P, (where P, is the capillary pressure), as well as of the relative distribution of 
branch vessels and the size of each compared with the main artery dimensions. In  
addition, the cyclic compression of the small myocardial arteries must be taken into 
account. 
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FIGURE 4. Quasi-steady outflow distribution used as input to method-of-characteristics 
computer program. Q = 0.03 cm-l, R = 0.02 cm-l. 

Owing to the large number of branches emanating from the left common and left 
anterior descending arteries, the specification of discrete fluid losses is not possible. 
However, one may make a crude estimate of the outflow distribution using fibreglass 
casts made of the coronary system of the horse prepared specifically for this purpose. 
By estimating fluid losses to branch vessels on the basis of the ratios of the areas of the 
main artery and the daughter branch as obtained from the casts, the distribution of the 
amount of fluid remaining in the main artery (as a percentage of the total left coronary 
inflow) has been derived and is shown in figure 3. The rate of vessel seepage per unit 
length is given by the slope of this distribution and is shown graphically for the SCM in 
figure 4, Among the various forms considered, the one judged most realistic in terms of 
the final computer results was 

For the SCM, K equals - 0.07 cm-1, Q and R equal 0.03 cm-' and 0-02 cm-l respec- 
tively, and 4 is in cmz/s. V, (equal to 700 c.c./min for the SCM) is the total inflow 
through the left ostium, Po (equal to 100 mm Hg) the perfusion pressure used for the 
preparation of the fibreglass casts and P, the capillary pressure. The ratio '/Po accounts 
for the cyclic compression of the vessel by the heart muscle. 

Even though these expressions are admittedly crude, until more detailed informa- 
tion on discrete branching effects is available it is felt that the approach taken here is 
reasonable. 
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FIGURE 5. Pressures used as input to method-of-characteristics computer program. 

Transmurag pressure 
The distribution c (z )  of the intramyocardial stress across the left ventricular wall was 
modelled by an exponential function with the result that the transmural pressure r] 

has the form 
(20) 

For the SCM, Q has been set equal to 0.072 and y to 0.9. Use of such a form for the 
extravascular compression was found to produce the most realistic results when com- 
pared with experiments (see discussion). 

q ( x ,  t )  = P - y( 1 - e+) P,. 

Initial conditions 

For the calculations to be presented here, the initial pressure and flow values at  time 
t = to were assumed to decrease exponentially with distance from the ostium. The 
entrance values, i.e. at  the ostium, were determined from in vivo experiments on 
horses. Since the numerical integration of the equations continues through several 
cardiac cycles, during which the effects of this initial distribution on the final solution 
are lost, it is not necessary to be particularly accurate in specifying these initial values. 
In fact, various forms for these initial conditions were used and found to have a 
negligible effect on the final solution. 

Boundary conditions 

Unlike the initial conditions, an accurate specification of the boundary conditions at 
both ends of the blood vessel which is valid for all time is extremely important. In 
principle, either the input flow rate or pressure may be specified as a function of time 



440 

120 

110 

I00 

120 

110 

100 

90 

110 - 
2 100 

80 2 
2 I0  a 

J .  A .  Rumberger and R. M .  Nerem 

c -I 

0 0.2 .0.4 0.6 0.8 1.0 
Time, t (s) 

FIGURE 6 .  Temporal left coronary pressure a t  various distances from the left coronary ostiurn 
for the i~tandard computer model. (a)  z = 0, ( b )  z = 15 cm, (c)  z = 30 cm, (d) z = 45 cm. 

at  the proximal boundary. However, owing to the numerous pressure recordings 
available from our laboratory for the coronary arteries and the observation that the 
left ostial pressure wave form is identical to that of the aortic root, it was the aortic 
pressure that was actually chosen as the proximal boundary condition. 

Equally allowable in the formulation of the problem is the specification of either the 
distal flow or pressure as a downstream boundary condition. However, intralumenal 
values of neither of these haemodynamic variables are available for use as a distal 
boundary condition, In  choosing pressure as a condition, one thus is forced to conjec- 
ture on actual capillary bed values, and for the present calculations a right atrial 
pressure wave form (obtained from a dog) was used as the distal boundary condition. 
Since the venous pressure drop is small, it  is a perfusion pressure difference equal to the 
local pressure minus the right atrial pressure that governs the flow, ignoring the effects 
of right ventricular compression. The justification for using this pressure is debatable; 
however, until such time as the pressure levels in the capillary bed at  the heart apex 
become measurable, it  is felt to be a reasonable approximation. 

Though actually not a boundary condition on the equations, the left ventricular 
pressure and its time derivative are important in governing the extravascular com- 
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pressive-stress development. This in turn affects the outflow through branch vessels, 
the local cross-sectional area and the wave speed, which is a function of the transmural 
pressure. Thus, for each in vivo experiment, values of the aortic-root and left ventri- 
cular pressure were measured. The left ventricular and boundary-condition pressure 
wave forms used for the standard computer model are shown in figure 5. These were 
entered into the computer model using a 24 term Fourier series. 

5. Results and discussion for standard computer model 
The characteristic equations (8) and (9) were solved by replacing them by their 

forward-difference equivalents and solving by the method of specified time intervals 
as discussed by Lister (1960). The computing mesh sizes used were Az = 1 cm and 
At = 0.001 s with T, the period of one cardiac cycle, set equal to 1 s. A total of two 
itberations (two complete cycles) was sufficient to produce the steady-state solution. 
Successive iterations were found to differ by less than 1 yo from the flow and pres- 
sure results for two iterations. To examine further the accuracy of the numerical inte- 
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gration, several computer runs were performed with Az = 0.05 cm and At = 0*0005 s. 
However, essentially no difference could be detected in the steady-state results after 
two iterations when comparing solutions for both mesh sizes. 

Flow and pressure results are not presented here for locations below the point corres- 
ponding to z = 45 cm, even though the terminal distance was set a t  z = L = 50 cm. 
This is because a t  z = L the downstream boundary condition was specified as a right 
atrial pressure wave; this condition was assumed and does not necessarily represent the 
correct distal value for the pre-capillary bed pressure. 

Figure 6 presents representative results for pressure wave forms at  various distances 
from the ostium obtained using the SCM. These reveal the presence of a wave oscillation 
- prevalent mainly during diastole - wliich masks the jncisura within a distance of a 
few centimetres from the ostium. This is in qualitative agreement with the trends 
presented in figure 2 and with those in general demonstrated by the in wivo experi- 
mental results previously discussed. It should be noted that, a t  the most distal arterial 
sections, the pressure wave form is identical in shape (but not in magnitude) to the 
left ventricular pressure. Although confirmation of this through in vivo experiments 
is not possible a t  present, it is reasonable and to be expected considering that the 
extravascular compression must be reflected within the easily distensible deep myo- 
cardial vessels. 

Figure 7 presents results of the SCM for the coronary flow velocity a t  various dis- 
tances z from the ostium. The flow oscillations are seen to be reproduced qualitatively 
in those curves corresponding to extramural vessels (0 < z < 20 cm), but are predicted 
gradually to diminish in prominence until they are completely attenuated in the areas 
corresponding to deep myocardial positions (e.g. at z = 45 cm). In  addition, the 
relative contribution of systole to the total flow occurring during the cardiac cycle is 
predicted to decrease with increasing distance from the ostium, as has been indicated 
qualitatively by others. This is due to the compression of the vessels and thus the 
significantly increased flow resistance which occurs during systole in the myocardial 
regions. 

The major emphasis of the discussion up to this point has been on qualitative com- 
parisons between theory and experiment. However, it  is also of interest to evaluate this 
model from a, quantitative viewpoint, both in order to judge the validity of the formu- 
lation as well as to establish areas where further refinements in the model are necessary. 
In  this context it should be noted that wide differences in coronary blood flow 
patterns have been observed experimentally in different animals. Consequently, one 
should not expect too much in comparing in vivo experimental results with the results 
of the idealized computer model. However, by using the in viwo aortic and left ventri- 
cular pressures of several animals for whom volumetric flow measurements also were 
available (obtained using electromagnetic flow cuffs), quantitative comparisons be- 
tween experimental and computer results have been carried out and are presented in 
figures 8 and 9. Here the ordinate is the instantaneous mean flow velocity V = Q/S, 
where Q is the volumetric flow rate and S is the cross-sectional area. The calculations 
presented reveal qualitatively the same wave form patterns during systole as have 
been measured, although the amplitudes are somewhat different. During diastole the 
computer calculations are seen to compare quantitatively quite favourably with 
experiment. The total flow (integrated across the entire cardiac cycle) for the measured 
and the computed wave forms is approximately the same in both figure 8 and figure 9, 
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FIGURE 8. Comparison of in vivo flow velocity V = Q/S from a horse at 15 cm distal to the left 
coronary ostium (solid curve) and the standard computer model for z = 15 cm (broken curve). 
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FIGURE 9. Comparison of in vivo flow velocity V = &IS from a horse at 15 cm distal to the left 
coronary ostium (solid curve) and the standard computer model for z = 15 cm (broken curve). 

even though the systolic peak flow velocities are calculated here to be nearly half those 
observed in the experiments. Furthermore, the predicted amplitude and frequency of 
the flow oscillations, which occur mainly during diastole, are seen to compare quite 
favourably . 

Thus the general characteristics of in vivo coronary flow patterns are reproduced well 
with the exception that the systolic flow rates are noticeably in error. This suggests 
that the systolic phase is the more difficult period of the cardiac cycle to model 
explicitly. One weakness of the present formulation might be the modelling of the 
compression of the blood vessels, particularly as it applies during the systolic phase of 
the cycle. Certainly a more accurate form for the time development of this myocardial 
stress could lead to a better reproduction of the systolic volume flow time history. 
However, up to the present it has not been possible to measure in vivo the time develop- 
ment of this extravascular compression. The outflow function $ or the functional form 
of the trensmural pressure 7 might also be the cause of the quantitative differences 
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observed during systole. However, various modifications to these two parameters have 
failed to improve the prediction of systolic flow; and it appears that more detailed 
experimental information on cardiac dynamics will be necessary before any further 
significant improvements in this model can be made. 

With regard to the flow oscillations observed during diastole, Wells et al. (1977) 
have reported similar observations in their pulsed ultrasonic Doppler experiments on 
the left coronary arteries of the pony. They conjectured that these perturbations of the 
flow velocity could be caused by the vibratory motion of the blood vessels in response 
to stress waves travelling across the heart muscle during left ventricular contraction. 
In  this case the velocity signals recorded would represent a superposition of a coronary 
flow signal associated purely with the fluid dynamics of the system and locally induced 
flow components associated with motion of the vessels themselves. However, the fact 
that these oscillations are quantitatively reproduced quite well by the SCM (which 
does not include the response of the blood vessels to the vibratory movement of the 
heart mass during contraction) tends to preclude the possibility of stress waves being 
primarily responsible for the occurrence of the oscillatory, wavelike. phenomena. The 
results suggest, rather, that the flow and pressure wave forms in the left coronary 
arteries must be highly dependent on the nature of the wave reflexions occurring con- 
tinuously within the system. This is just as was concluded by Rockwell (1969) for the 
aorta. 

It should be noted that there is evidence that the nature of these oscillations may be 
size (or species) dependent. Though the results of Wells et al. (1977) confirm the in vivo 
data presented here from a qualitative viewpoint, quantitatively their results on 200 
kg ponies do not compare with the results from our studies on 500 kg horses. In  even 
smaller animals, owing possibly to poor fidelity of the flow measurement devices, these 
oscillations have not been universally observed. For example, flow traces taken in the 
left anterior descending coronary artery of 15 kg dogs in our own laboratory are devoid 
of these flow oscillations, yet a recent measurement in a 35 kg Great Dane provided 
evidence of them. The results of Atabek et al. (1975) from coronary arteries of larger 
dogs indicate a developing flow oscillation activity. Furthermore, the results of Gregg, 
Khouri & Rayford (1965) in the left circumflex coronary artery of a conscious dog show 
a quite distinct wavelike motion to be present on flow traces during diastole. These 
waves, however, appear to be of a higher frequency (10-20 Hz) and lower amplitude 
than those calculated using the computer model and those observed in vivo in the 
horse. In  addition, results on coronary flow patterns in dogs obtained using catheter 
tip flowmeters in the laboratory of Pei?er (1976, private communication) a t  the Ohio 
State University have indicated qualitatively the same character of wave oscillation 
activity as is exhibited by the results of Gregg et al. (1965). 

To examine this further, a series of parametric calculations was carried out. These 
have been used to study more closely the importance of the governing mechanical 
parameters in the flow and pressure wave form development. From this the effects of 
altered outflow on the computed flow wave forms were found to be of little consequence 
except in extreme cases. As for the effects of an altered wave speed dependence on 
transmural pressure or spatia.1 location, which concurrently alters vessel compliance, 
somewhat more striking changes in wave forms were noted in comparison with the 
SCM. Most apparent among these effects was that, as the wave speed was increased 
with distance from the ostium (over that used in the standard model), the total volu- 
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metric flow a t  any particular cross-section decreased and the wave oscillation activity 
during diastole was seen to increase in frequency and decrease in amplitude. 

It should be noted that the length of the extramural coronary system, i.e. the dis- 
tance from the ostium to where the vessels penetrate into the myocardium, is of the 
order of a quarter-wavelength for a wave with a frequency of 5-10 Hz. This thus 
suggests that  their origin is associated with a wave reflexion process and that this may 
be initiated during systole, when the extramural vessels are in effect a closed-end tube. 
Furthermore, although setting the viscosity coefficient equal to zero had a pronounced 
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effect on the more distal flow rates, little effect was observed on the nature of the flow 
oscillations with regard LO amplitude and frequency. This suggests that these oscilla- 
tions are basically the result of an inviscid phenomenon. This also is borne out by the 
syncrony of oscillations simultaneously recorded with a hot-film anemometer velocity 
probe and an electromagnetic flowmeter. 

In  considering a possible species dependence of these coronary blood flow oscilla- 
tions, it  was of interest to study the influence of cross-sectional area, vessel taper and 
system length independently of changes in mechanical parameters. The object here 
was to examine further the apparent wave reflexion phenomena and the possible eflect 
of cardiac size on the wave oscillation activity. To consider this, the SCM was scaled by 
a parameter z' = (So,,/So)i, where S o h  is the left ostial area for the SCM horse (soh = 
1-5 cmz) and So is the left ostial area in the case to be considered. Using this non- 
dimensional length, all physical length dependences stated explicitly within the 
standard computer model may be scaled. As an example, a distance stated within the 
computer program as gz was set equal to gzz'. The length of the system was also scaled, 
and all other parameters remained unchanged. Boundary conditions were kept equal 
to those employed in the standard case. 

Figure 10 demonstrates the effect of such a scaling on the predicted flow oscillation 
phenomena for So = 1-5 cm2 (SCM), So = 0.5 cm2 (a typical pony) and So = 0.2 om2 
(a typical human). It should be kept in mind that species differences in end systolic 
and end diastolic flow rates were not taken into account. For example, in a large 
horse aortic pressures are nominally 120/100 mm Hg (this was used as input for all 
cases) while in the human they are about 120/80 mm Hg. Such differences are not 
reflected in the results in figure 10 as only length-related parameters have been scaled. 
From these calculations, the amplitude of flow oscillations during diastole is predicted 
to decrease as So is reduced. Furthermore, as both the area (as scaled by So) and the 
effective length L of the arteries are reduced from horse to approximate human 
dimensions, the frequency content of the flow oscillations is predicted to increase. 
Figure 11 demonstrates this frequency dependence on heart size, the results shown 
being a t  a fixed length-to-diameter ratio from the left ostium corresponding to 5 cm 
in the SCM and for both in wivo and computer results. The heart size has been scaled 
through the local cross-sectional area S. This analysis implies that the relative geo- 
metric size of the coronary system is one of the most important factors (excluding 
neural and metabolic changes) in determining the general flow wave form patterns. 

Finally, calculations have also been carried out using a linear area-pressure rela- 
tionship in place of (16). The results obtained in this manner are qualitatively quit.e 
similar to those presented here and suggest that studies employing a linear model 
could be used to obtain better insight into the origin of the low frequency oscillations 
reported here. Such a linear model could be used to investigate such aspects of the 
problem as impedance matching and the selective interference and/or superposition of 
waves. A linear model might also allow a more satisfactory incorporation of vessel 
branching effects. 

In  conclusion, a one-dimensional nonlinear mathematical treatment of coronary 
blood flow in the horse has produced a model that qualitatively, and to a large extent, 
quantitatively, reproduces many of the more salient features of experimental obser- 
vations. This model has many empirical aspects to it, and yet quantitative comparisons 
between in wivo coronary flow patterns and corresponding computer calculations at the 
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FIGURE 11. Frequency of wave oscillations occurring during diastole from in vivo measurements 
and computer calculations as a function of local cross-sectional area a t  approximately 5 cm distal 
to the left coronary ostium. 0, in vivo dog (Gregg et al.) ; 0, in vivo horse ; A, computer calcula- 
tions; 0 ,  in vivo dog. 

same vessel position have demonstrated reasonable agreement. In  particular, the model 
correctly predicts volumetric flow rates, fails to reproduce peak flow rates during 
systole, but during diastole predicts the blood flow patterns quite accurately, including 
the incidence of a wave oscillation at  this time as observed from in vivo records. These 
oscillations are felt to be the result of a wave reflexion process whose nature is not 
explicitly known. Examination of various mechanical parameters determining 
coronary blood flow as manifested through the model has revealed that changes 
in vessel compliance (as modelled by the wave speedc) and in the general cardiac 
dimensions (as modelled by the length L of the vessels and the left ostium area 8,) are 
major factors in determining the quantitative nature of any flow oscillations, the 
resulting blood flow patterns and observed differences in coronary blood flow between 
individuals as well as between different species. 

This investigation was supported by the National Science Foundation under Grant 
ENG 71-02286. 
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